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1. INTRODUCTION 
     Thermophoresis is a phenomenon, which causes small 
particles to be driven away from a hot surface and toward 
a cold one. Small particles, such as dust, when suspended 
in a gas with a temperature gradient, experience a force in 
the direction opposite to the temperature gradient. 
Thermophoresis phenomenon plays an important role in 
a variety of applications such as the production of 
ceramic powders in high temperature aerosol flow 
reactors, and the production of optical fiber performs by 
the modified chemical vapor deposition (MCVD) 
process. In the optical fiber process, high deposition 
levels are desired since the goal is to coat the interior of 
the tube with particles.  On the other hand, in ceramic 
powder production, low deposition levels are desired as 
deposits lead to reduced product yield and potential pipe 
blockage. Thermophoretic deposition of radioactive 
particles is considered to be one of the important factors 
causing accidents in nuclear reactors. In light of these 
applications, Peterson et al. [1] studied two different 
model approaches for aerosol deposition on wafers and 
the particle concentration profile above a wafer surface. 
Sasse et al. [2] analyzed the concept of combining 
thermophoresis with natural convection flow for the 
design of a control device for capturing sidestream 
smoke particles. The approach involved numerical 
simulations of the competition among advection, 
diffusion, and thermophoresis within a channel between  

 
 
 
 
 

(a) parallel plates and (b) concentric tubes. Their 
numerical results showed that the temperature difference 
between the plates, with the cold wall fixed at ambient 
temperature, does not have a significant effect on the 
efficiency of particle removal. Tsai and Liang [3] adopted 
the numerical solutions for self-similar boundary layer 
flows to develop a rational correlation for evaluating the 
effect of thermophoresis on aerosol deposition from 
laminar flow system. In their model they have used the 
similarity method to estimate the precipitation rates for 
dust, soot and mist from the aerosol flow. Selim et al. [4] 
investigated the effect of surface mass transfer on mixed 
convection flow past a heated vertical flat permeable 
plate with thermophoresis. Effects of heat generation or 
absorption on thermophoretic free convection boundary 
layer from a vertical flat plate embedded in a porous 
medium have been investigated by Chamkha et al. [5]. 
Postelnicu [6] studied the effects of thermophoresis 
particle deposition in free convection boundary layer 
from a horizontal flat plate embedded in a porous 
medium. Duwairi and Damesh [7] analyzed the effects of 
thermophoresis particle deposition on mixed convection 
from vertical surfaces embedded in saturated porous 
medium. Alam et al. [8, 9, 10] studied the effects of 
thermophoresis on steady two-dimensional 
hydromagnetic heat and mass transfer flow over an 
inclined flat plate with various flow conditions. Damesh 
et al. [11] studied non-similar solutions of 
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magnetohydrodynamic and thermophoresis particle 
deposition on mixed convection problem in porous 
media along a vertical surface with variable wall 
temperature. Recently, Rahman and Postelnicu [12] 
studied the effects of thermophoresis on the forced 
convective laminar flow of a viscous incompressible 
fluid over a rotating disk. 
     Therefore the objective of the present paper is to 
investigate the effects of thermophoresis on an unsteady 
two-dimensional hydrodynamic forced convective heat 
and mass transfer flow of a viscous incompressible fluid 
along a heated impermeable wedge. By introducing a 
new class of similarity transformations proposed by 
Sattar [13], the governing non-linear partial differential 
equations are reduced to locally similar ordinary 
differential equations which are solved numerically by 
applying shooting method. 
 
 
2. MATHEMATICAL FORMULATION 
     We consider an unsteady two-dimensional laminar 
forced convective hydrodynamic heat and mass transfer 
flow of a viscous incompressible fluid along a heated 
impermeable wedge (see Fig. 1) in the presence of 
thermophoresis. The angle of the wedge is given 
by βπ=Ω . The flow is assumed to be in the x-direction 
which is taken along direction of the wedge and the 
y-axis normal to it. The surface of the wedge is 
maintained at a uniform constant temperature wT  and a 

uniform constant concentration wC  which are higher 

than the ambient temperature ∞T  and ambient 

concentration ∞C respectively. 
     Then under the usual Boussinesq’s and boundary 
layer approximations, the governing equations 
describing the conservation of mass, momentum, energy 
and concentration respectively can be written as follows: 
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     where u, v are the velocity components in the x and y 
directions respectively, t is the time ,υ  is the kinematic 
viscosity, ρ is the density of the fluid. T, Tw and ∞T  are 
the temperature of the fluid inside the thermal boundary 
layer, the wedge surface temperature and the fluid 
temperature in the free stream, respectively, while C, Cw 
and ∞C  are the corresponding concentration, gλ  is the 
thermal conductivity of the fluid, cp is the specific heat at 
constant pressure, D is the molecular diffusivity of the 
species concentration and VT is the thermophoretic 
velocity which is defined as follows 
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     where k is the thermophoretic coefficient which 
ranges in value from 0.2 to 1.2 as indicated by Batchelor 
and Shen [14]  
     The appropriate boundary conditions for the above 
model are as follows: 

0 =y at , C = C , T = T 0, =  v0, =u ww                           (6a) 
∞→=== ∞∞ yasCCTTtxUu ,),,( ,                        (6b) 

     where U(x,t) is the potential  flow velocity for the 
wedge flow which is taken as follows (see  also Sattar 
[15]): 
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     where m is an arbitrary constant and is related to the 
wedge angle and δ is the time dependent length scale  
which is taken to be ( see also Sattar [15,13]) as 
δ = δ (t).                                                                  (8) 

     In order to obtain similarity solution of the problem 
we introduce the following non-dimensional variables: 
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     where η is the similarity variable, ψ is the stream 
function  that satisfies the continuity equation (1) and is 
defined by yu ∂∂= ψ  and xv ∂∂−= ψ . 
     Now using equations (8)-(9) into equations (2)-(4) we 
obtain the following non linear ordinary differential 
equations: 
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with the transformed boundary conditions: 
 

Fig.1. Physical model and co-ordinate system 
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00,0,0,0 ====′= ηφθ atff ,             (13a) 
∞→===′ ηφθ asf 0,0,1 .                   (13b) 
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     Now in order to make the equations (10)-(12) locally 

similar, let       ,1 λδ
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     where λ  is taken to be a constant and thus can be 
treated as a dimensionless measure of the unsteadiness. 
 
Hence equations (10)-(12) becomes 
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Thus integrating (18) we obtain that   
     [ ] 1/1)1( ++= mtmc υδ                                             (19) 
     Now taking 2=c  and 1=m  in equation (19) we 
obtain tυδ 2=  which shows that the parameter δ  can 
be compared with the well established scaling parameter 
for the unsteady boundary-layer problems [see 
Schlichting [16]. 
 
 
3. NUMERICAL SOLUTIONS 
     The set of nonlinear ordinary differential equations 
(15)-(17) along with the corresponding boundary 
conditions (13) have been solved numerically by 
applying sixth order Runge-Kutta integration scheme 
together with Nachtsheim-Swigert [17] shooting 
iteration technique [for detailed discussion of the method 
see also Alam et al.[18]] with  β , λ, Pr, Sc, k, Nt and Nc as 
prescribed parameters. A step size of 01.0=∆η  was 
selected to be satisfactory for a convergence criterion of 
10−6 in all cases. The value of ∞η  was found to each 
iteration loop by the statement ηηη ∆+= ∞∞ . The 

maximum value of ∞η  to each group of parameters β, λ, 
Pr, Sc, k, Nt and Nc determined when the value of the 
unknown boundary conditions at 0=η  does not change 
to successful loop with an error less than 10−6. 

4. TESTING OF THE CODE 
     To check the validity of the present code we have 
calculated the values of ( )0f ′′  for the Falkner-Skan 
boundary layer equation for the case 0=β  and 

0=λ for different values of η . Thus from table-1 we 
observe that the data produced by the present code and 
those of White [19] are in excellent agreement. This 
lends confidence in the present numerical method. 

Table 1: Comparison of the present numerical results of 
Falkner-Skan boundary layer equation for the case of β = 

0 and 0=λ . 

η  )(ηf ′′  
 Present work White[19] 

0.0 0.47027089 0.46960 
0.5 0.46568757 0.46503 
1.0 0.43494906 0.43438 
1.5 0.36218408 0.36180 
2.0 0.25581418 0.25567 
3.0 0.06763291 0.06771 
4.0 0.00684790 0.00687 
5.0 0.00025589 0.00026 

 
 
5. RESULTS AND DISCUSSION 
     Numerical calculations have been carried out for 
different values of β,λ, Pr, Sc, k, Nt and Nc . The values of 
Pr have taken to be 0.71, 1.0, 4.34 and 7.0 which 
correspond physically to air, electrolyte solution and 
water at two different temperatures 400C and 200C 
respectively.. The values of Schmidt number Sc are taken 
for hydrogen )22.0( =Sc , helium )30.0( =Sc , 
water-vapour )60.0( =Sc  and Carbon-Dioxide )94.0( =Sc . It is 
also worth to mention that according to the definition of 
the thermophoresis parameter 

tN  and concentration ratio 
parameter cN  always greater than one. The effect of 
changes in the wedge angle parameter β  on the 
dimensionless velocity function f ′  against η  is 
displayed in Fig. 2(a) for the values 0, 1/6, 1/2, 1 and 1.6. 
The value of 0=β corresponds to wedge angle of zero 
degree  i. e. flat plate, 2/1=β  corresponds to the wedge 
angle of 90 degrees i. e. the vertical plate and 

1=β corresponds to the wedge angle of 180 degrees i. e. 
stagnation point flow. From this figure it is clear that as 
the wedge angle parameter β  increases the fluid velocity 
also increases. 
     The results also show that the velocity profiles 
became steeper for larger values of the wedge angle 
parameter β . The wedge angle parameter is a measure of 
the pressure gradient, and so a positive value of β  
indicates a negative (or favorable) pressure gradient. It is 
also mentionable here that separation is found to occur 
for very small non-negative values of β . 
 
 
 
 

(a) 
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Fig. 2. Dimensionless (a) velocity, (b) temperature and 
(c) concentration for different values of β while λ = 0.3, 
Pr = 0.71, Sc = 0.94, Nc = 3.00, k = 0.50 and Nt = 2.00 
 
     Physically this means that unlike the case of steady 
solution obtained by Hartree [20], the unsteady boundary 
layer is not able to support a small acceleration without 
separation. Nonetheless, the profiles for the unsteady 
case follow the same trend of those for the steady case 
(see Schlichting and Gersten [21]). This result is also 
consistent with the works of Sattar [13]. Fig. 2 (b) shows 
non-dimensional temperature profiles within the 
boundary layer for different values of the wedge angle 
parameter. From this figure we see that the temperature 
profiles decrease with the increasing values of the wedge 
angle parameter β . The effects of the wedge angle 
parameter on the dimensionless concentration profiles 
are shown in Fig. 2(c) and we observe that as the wedge 
angle parameter increases, the concentration profiles 
decreases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Fig 3. Dimensionless (a) velocity, (b) temperature and (c) 
concentration for different values of λ while β = 0.5 (i. e. 
Ω = 900), Pr = 0.71, Sc = 0.94, Nc = 3.00, k = 0.50 and Nt 
= 2.00 
 
     The effects of the unsteadiness parameter λ  on the 
dimensionless velocity profiles within the boundary layer 
are shown in Figs. 3(a) when wedge angle parameter β  
takes the values 1/2 (vertical plate flow). From these 
figures we observe that for large values of the parameter 
λ  that is for higher unsteadiness, separation occurs even 
in the case of accelerated flow or of adverse pressure 
gradient )0,0( >> βm  which is on the contrary to the 
findings of Hartree [20] for the steady wedge flow. The 
effects of the unsteadiness parameter on the 
non-dimensional temperature and concentration profiles 
are displayed in 3(b)-3(c), respectively. From these 
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figures we observe that both the temperature and 
concentration profiles decrease with the increasing 
values of the unsteadiness parameter λ . 
     The influence of Prandtl number Pr on the 
temperature profiles within the boundary layer is 
depicted in Fig.4.  

 

 

 

 

 

 

 

 

Fig 4. Dimensionless temperature for different values of 
Pr while β = 1/6 (i. e. Ω = 300), λ = 0.50, Sc = 0.94, Nc = 

3.00, k = 0.50 and Nt = 2.0. 

     Prandtl number defines the relative effectiveness of 
the momentum transport by diffusion in the 
hydrodynamic (velocity) boundary layer to the energy 
transported by thermal diffusion in the thermal boundary 
layer. According to the definition of Prandtl number high 
Pr fluids posses lower thermal conductivities which 
reduces the conduction heat transfer and increases 
temperature variations at the wall. Low Pr fluids have 
higher thermal conductivities and hence for Pr < 1, the 
thermal boundary layer will be thicker than the velocity 
boundary layer. Conversely for Pr > 1, the thermal 
boundary layer will be thinner than the velocity boundary 
layer. 
    For the special case of Pr = 1, the two boundary layer 
will approximately of equal extent. An increase in Pr 
from 0.71, through 1, 4.34, 7, as shown in Fig. 4, 
therefore causes a strong decrease in temperature 
functionθ , throughout the flow domain. With larger Pr 
values, thermal diffusivity is much less than the 
momentum diffusivity causing a decrease in temperature 
in the boundary layer. In order to examine the effect of 
thermophoresis on particle deposition onto a wedge 
surface, the concentration profiles are displayed in Fig. 5 
(a), for relative temperature difference parameter tN . 
From this figure it is clear that the concentration profiles 
are decreased when temperature ratios are increased; this 
is due to small temperature differences between the 
wedge surface and free stream conditions. The effect of 
the thermophoretic coefficient k  on the concentration 
profiles are shown in Fig. 5(b). This figure shows that as 
the thermophoretic coefficient is increased the 
concentration is also increased; this is due to favorable 
temperature gradients. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Dimensionless concentration profiles for different 
values of (a) Nt (k = 0.50) and (b) k (Nt = 2.0) while β = 
1/6 (i. e. Ω = 300), Pr = 0.71, Sc = 0.94, λ = 0.50, Nc = 
3.00. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Dimensionless concentration profiles for different 
values of (a) Sc (Nc = 0.50) and (b) Nc (Sc = 0.94) while 
β = 1/6 (i. e. Ω = 300), Pr = 0.71, Sc = 0.94, λ = 0.50, k = 
0.50, Nt = 2.0. 
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     Fig. 6 (a) shows the effect of the Schmidt number Sc 
on the dimensionless concentration profiles. We note that 
the Schmidt number embodies the ratio of the 
momentum to the mass diffusivity. 
     Schmidt number therefore quantifies the relative 
effectiveness of the momentum and mass transport by 
diffusion in the hydrodynamic (velocity) and 
concentration (species) boundary layers. From this figure 
we see that the concentration profiles decrease with the 
increasing values of Sc and this is the analogous to the 
effect of increasing the Prandtl number on the thickness 
of the thermal boundary layer. From Fig.6 (b) observe 
that the concentration ratio profiles increases with the 
increase of cN  and this due to the favorable 
concentration difference between the wedge surface and 
the free stream conditions. 
 
 
5. CONCLUSIONS 
     In this paper we have discussed the effects of 
thermophoresis on an unsteady two-dimensional forced 
convective heat and mass transfer flow over a heated 
impermeable wedge. The governing non-linear partial 
differential equations are transformed into locally similar 
boundary layer equations which are solved numerically 
by applying shooting method. Comparisons with 
previously published work were performed and the 
results were found to be in excellent agreement. From the 
present numerical investigations the following major 
conclusions may be drawn: 
i. As the wedge angle parameter increases, the growth of 

the hydrodynamic, thermal and concentration 
boundary layers thickness decreases. Separation may 
occur for small values of. 0≥β  

ii.Velocity, temperature and concentration profiles 
decrease as the unsteadiness parameter increases. In 
the particular case of 2/1=β  (vertical plate), back 
flow is found to occur for lower values of 7.0=λ  
which give rise to decelerated flow close to the wall. 
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